# The Structure of Tetra- $\mu$-acetato-bis(acetonitrile)dirhodium(II) ( $\boldsymbol{R} \boldsymbol{h}-\boldsymbol{R} \boldsymbol{h}$ ) 

By F. Albert Cotton and J. Lon Thompson<br>Department of Chemistry, Texas A\&M University, College Station, Texas 77843, USA

(Received 2 April 1981; accepted 2 June 1981)


#### Abstract

Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right], \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Rh}_{2}\), $M_{r}=524.10$, orthorhombic, Pnma, $a=13.756$ (1), $b=13.697$ (2), $c=9.908$ (1) $\AA, V=1866.8$ (7) $\AA^{3}$, $Z=4, d_{x}=1.865 \mathrm{Mg} \mathrm{m}^{-3}, \mu($ Мо $K a)=1.758 \mathrm{~mm}^{-1}$. The structure was solved using Patterson and Fourier techniques with diffractometer data and refined by least squares to a final $R$ (unit-weighted) of 0.039 based on 1457 independent observations each with intensity greater than $3 \sigma$. The molecule consists of the usual $\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{C} R\right)_{4}$ arrangement with axially coordinated $\mathrm{CH}_{3} \mathrm{CN}$ groups. The $\mathrm{Rh}-\mathrm{Rh}, \mathrm{Rh}-\mathrm{N}$ and $\mathrm{Rh}-\mathrm{N}^{\prime}$ distances are 2.384 (1), 2.249 (7) and 2.258 (6) $\AA$ respectively.


Introduction. Since the structure of $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ was first determined accurately (Cotton, DeBoer, LaPrade, Pipal \& Ucko, 1971) following an earlier preliminary structure determination (Porai-Koshits \& Antsyshkina, 1962), the structures of more than $30\left|\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{4} L_{2}\right|$ compounds have been determined and $\mathrm{Rh}-\mathrm{Rh}$ distances ranging from $2.371(1) \AA$ in $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CCMe}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Cotton \& Felthouse, 1980) to 2.486 (1) $\AA$ in $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Cotton, Felthouse \& Klein, 1981) have been found. Of these, 15 contain $\mathrm{O}_{2} \mathrm{CCH}_{3}$ groups, but the one with the important axial ligand $\mathrm{CH}_{3} \mathrm{CN}$ has not been studied. We report that structure here.
Anhydrous rhodium acetate was prepared from hydrated rhodium trichloride (Engelhard Industries) refluxed in a mixture of glacial acetic acid and ethanol following the literature (Rempel, Legzdins, Smith \& Wilkinson, 1971). The acetate ( $0 \cdot 100 \mathrm{~g}$ ) was dissolved in 100 ml of $1: 1$ acetonitrile/toluene mixture to give a dark-purple solution. Upon slow evaporation of this solution, large red-purple crystals of $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}^{-}\right.$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ ] were obtained.

A crystal with dimensions $0.30 \times 0.50 \times 0.70 \mathrm{~mm}$ was attached to the end of a glass fiber with epoxy cement and mounted on a Syntex $P \overline{1}$ diffractometer. All work was done using Mo $K \alpha$ radiation monochromated by a graphite crystal in the incident beam. Indexing on 15 intense, centered reflections and examination of axial photographs showed a unit cell in the orthorhombic system with dimensions as given in the Abstract. Systematic absences of $0 k l, k+l \neq 2 n$
and $h k 0, h \neq 2 n$ indicated the space group to be Pnma (No. 62) or Pna ${ }_{1}$ (No. 33). A Howells-PhillipsRogers test strongly indicated a centrosymmetric arrangement and refinement was conducted successfully in Pnma. Data were collected by $\theta / 2 \theta$ scans in the range $0^{\circ}<2 \theta<50^{\circ}$ giving a total of 1478 data of which 1457 having intensities greater than $3 \sigma$ were used to refine 122 variables. Three reflections were checked periodically and they showed no decay during data collection. An empirical absorption correction ( $\mu$ $=1.758 \mathrm{~mm}^{-1}$ ) was made in which a $\Psi$ scan for each of five reflections near $\chi=90^{\circ}$ was measured. Each reflection was measured at $10^{\circ}$ intervals from $\Psi=0^{\circ}$ to $\Psi=360^{\circ}$. The normalized transmission factors obtained varied from 1.00 to 0.85 .

The approximate positions of the two Rh atoms were obtained from a three-dimensional Patterson map. Refinement of these positions gave discrepancy indices of $R_{1}=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|=0.30$ and $R_{2}=$ $\left.\left.\left|\sum w\left(\left|F_{o}\right|-\mid F_{c}\right)^{2} / \sum w\right| F_{o}\right|^{2}\right|^{o / 2}=0 \cdot 38$. The remaining $\mathrm{N}, \mathrm{O}$, and C atoms were found in subsequent difference Fourier maps, alternated with cycles of least-squares refinement. Final refinement on the positional and anisotropic thermal parameters for all 16 atoms gave discrepancy indices of $R_{1}=0.039$ and $R_{2}$

Table 1. Positional and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

$$
B_{\mathrm{eq}}=\frac{1}{3} \text { trace } \tilde{\mathbf{B}} .
$$

|  | $x$ |  | $y$ | $z$ |
| :--- | :---: | :--- | :---: | :--- |
|  | $B_{\text {eq }}\left(\AA^{2}\right)$ |  |  |  |
| $\mathrm{Rh}(1)$ | $0.18290(4)$ | 0.2500 | $0.15428(5)$ | $2.37(1)$ |
| $\mathrm{Rh}(2)$ | $0.10402(4)$ | 0.2500 | $-0.05994(5)$ | $2.58(1)$ |
| $\mathrm{O}(1)$ | $0.0872(2)$ | $0.3536(3)$ | $0.2138(4)$ | $3.15(7)$ |
| $\mathrm{O}(2)$ | $0.0111(3)$ | $0.3521(3)$ | $0.0130(4)$ | $3.62(8)$ |
| $\mathrm{O}(3)$ | $0.2736(3)$ | $0.3550(3)$ | $0.0820(4)$ | $4.05(8)$ |
| $\mathrm{O}(4)$ | $0.1996(3)$ | $0.3563(3)$ | $-0.1189(4)$ | $3.75(8)$ |
| $\mathrm{N}(1)$ | $0.2550(5)$ | 0.2500 | $0.3590(6)$ | $3.9(1)$ |
| $\mathrm{N}(2)$ | $0.0358(5)$ | 0.2500 | $-0.2663(7)$ | $5.0(2)$ |
| $\mathrm{C}(1)$ | $0.0200(4)$ | $0.3821(4)$ | $0.1346(5)$ | $3.0(1)$ |
| $\mathrm{C}(2)$ | $-0.0535(4)$ | $0.435(5)$ | $0.1871(7)$ | $4.5(1)$ |
| $\mathrm{C}(3)$ | $0.2622(4)$ | $0.3871(5)$ | $-0.0385(6)$ | $3.8(1)$ |
| $\mathrm{C}(4)$ | $0.3269(6)$ | $0.4681(6)$ | $-0.0862(10)$ | $7.0(2)$ |
| $\mathrm{C}(5)$ | $0.2774(5)$ | 0.2500 | $0.4686(8)$ | $4.2(2)$ |
| $\mathrm{C}(6)$ | $0.3072(7)$ | 0.2500 | $0.6052(11)$ | $9.6(5)$ |
| $\mathrm{C}(7)$ | $0.0193(5)$ | 0.2500 | $-0.3788(8)$ | $3.5(2)$ |
| $\mathrm{C}(8)$ | $0.0014(7)$ | 0.2500 | $-0.5245(9)$ | $5.6(3)$ |
|  |  |  |  |  |

Table 2. Bond distances for $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right](\AA)$

| $\mathrm{Rh}(1)-\mathrm{Rh}(2)$ | $2.384(1)$ |
| :---: | :---: |
| $-\mathrm{O}(1)$ | $2.024(3)$ |
| $-\mathrm{O}(3)$ | $2.034(3)$ |
| $-\mathrm{N}(1)$ | $2.258(6)$ |
| $\mathrm{Rh}(2)-\mathrm{O}(2)$ | $2.028(3)$ |
| $-\mathrm{O}(4)$ | $2.047(3)$ |
| $-\mathrm{N}(2)$ | $2.249(7)$ |
| $\mathrm{C}(1)-\mathrm{O}(1)$ | $1.273(5)$ |
| $-\mathrm{O}(2)$ | $1.278(6)$ |
| $-\mathrm{C}(2)$ | $1.500(6)$ |

$=0.060$, and the e.s.d. of an observation of unit weight was $1 \cdot 53$. The largest peak in the final difference Fourier map was $0.99 \mathrm{e}^{-3}$. This and several other peaks appeared to be associated with H atoms on the methyl C atoms, but we did not consider it worthwhile to continue refinement including them.

The positional parameters are listed in Table 1 and the bond distances are given in Table 2. The bond angles are all close to 90,180 or $120^{\circ}$, as suggested by Fig. 1 which shows the molecule and the numbering scheme used.*

Discussion. $\left\{\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ has the expected structure, qualitatively. The two Rh atoms and the NCC chains of the acetonitrile molecules lie in a mirror plane. This mirror contains no acetate groups, so that there are two crystallographically independent ligands. The NCC chains are linear within the uncertainties but deviate slightly, $1.0(2)$ and $2.4(2)^{\circ}$, from collinearity with the $\mathrm{Rh}-\mathrm{Rh}$ bond. The $\mathrm{Rh}-\mathrm{N}$ distances, 2.258 (6) and $2 \cdot 249$ (7) $\AA$, are equal within the uncertainties.

[^0]

Fig. 1. A computer-drawn representation of the molecule, showing the atom-labelling scheme. Thermal ellipsoids enclose $40 \%$ of the electron density.

They are about $0 \cdot 10 \AA$ longer than the only previously observed $\mathrm{Rh}-\mathrm{N}$ axial bond in a dirhodium(II,II) compound, namely $\left[\mathrm{Rh}_{2}(\mathrm{mhp})_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]$, where Hmhp is 2-hydroxy-6-methylpyridine (Cotton \& Felthouse, 1981). The $\mathrm{Rh}-\mathrm{N}$ distances are quite similar to those in the pyridine adduct, $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right], \quad 2 \cdot 227$ (3) $\AA \quad(\mathrm{Koh} \quad \&$ Christoph, 1978). The $\mathrm{Rh}-\mathrm{Rh}$ bond length is about equal to the shortest previously known.

We thank the National Science Foundation for support.

## References

Cotton, F. A., Deboer, B. G., LaPrade, M. D.. Pipal, J. R. \& Uско, D. А. (1971). Acta Crıst. B27. 1664-1671.

Cotton, F. A. \& Felthouse, T. R. (1980). Inorg. Chem. 19, 323-328.
Cotton, F. A. \& Felthouse, T. R. (1981). Inorg. Chem. 20, 584-600.
Cotton, F. A., Felthouse, T. R. \& Klein, S. (1981). Inorg. Chem. In the press.
Koh, Y. B. \& Christoph, G. G. (1978). Inorg. Chem. 17, 2590-2596.
Poral-Koshits, M. A. \& Antsysheina, A. S. (1962). Dokl. Akad. Nauk SSSR, 146. 1102-1105.
Rempel, G. A., Legzdins, P.. Smith. P. \& Wilkinson, G. (1971). Inorg. Syinth. 13. 90-91.


[^0]:    * Lists of structure factors, anisotropic thermal parameters and bond angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36211 ( 10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square. Chester CH1 2HU, England.

